'Nano' medicine might someday free diabetics from daily needles - WSLS 10 NBC in Roanoke/Lynchburg Va

'Nano' medicine might someday free diabetics from daily needles

Updated:
© iStockphoto.com / Dr.Heinz Linke © iStockphoto.com / Dr.Heinz Linke
  • HealthMore>>

  • Spouse's sunny outlook may be good for your health

    Spouse's sunny outlook may be good for your health

    Marriage vows often include the promise to stick together for better or for worse, and research now suggests that when it comes to your health, having an optimistic spouse is better.
    Marriage vows often include the promise to stick together for better or for worse, and research now suggests that when it comes to your health, having an optimistic spouse is better.
  • Mental illness not a driving force behind crime

    Mental illness not a driving force behind crime

    TUESDAY, April 22, 2014 (HealthDay News) -- Less than 10 percent of crimes committed by mentally ill people are directly linked to the symptoms of their disorders, a new study shows. "When we hear about crimes committed by people with mental illness, they tend to be big headline-making crimes, so they get stuck in people's heads," said study author Jillian Peterson, a psychology professor at Normandale Community College in Bloomington, Minn. "The vast majority of people with mental illness a...
    TUESDAY, April 22, 2014 (HealthDay News) -- Less than 10 percent of crimes committed by mentally ill people are directly linked to the symptoms of their disorders, a new study shows. "When we hear about crimes committed by people with mental illness, they tend to be big headline-making crimes, so they get stuck in people's heads," said study author Jillian Peterson, a psychology professor at Normandale Community College in Bloomington, Minn. "The vast majority of people with mental illness a...
  • A little wine might help kidneys stay healthy

    A little wine might help kidneys stay healthy

    An occasional glass of wine might help keep your kidneys healthy, new research suggests.
    An occasional glass of wine might help keep your kidneys healthy, new research suggests.
By Serena Gordon
HealthDay Reporter

TUESDAY, May 28 (HealthDay News) -- Researchers have developed a network of so-called "nanoparticles" that theoretically could be injected into the body and release insulin to counteract rising blood sugar levels in people with diabetes.

Tested so far in mice, the nano-network was able to maintain normal glucose levels for more than a week with a single injection. Currently, patients have to inject themselves with insulin several times a day to control their blood sugar levels.

"The main aim was to mimic the activity of the pancreas. In our system, when glucose levels go up, the nanoparticles degrade to release insulin," said study author Zhen Gu, from the joint department of biomedical engineering at the University of North Carolina at Chapel Hill and North Carolina State University. Gu, along with Robert Langer and Daniel Anderson, developed this technology when Gu was working at the Massachusetts Institute of Technology.

Although exciting, the research is very preliminary, one expert said.

"From a patient perspective, this could be incredible. It would reduce the burden of diabetes," said Sanjoy Dutta, senior director of treatment therapies at JDRF (formerly known as the Juvenile Diabetes Research Foundation). "But there are still lots of questions to be answered. This was a first-pass study."

This treatment would likely be most useful for people with type 1 diabetes, an autoimmune condition in which the pancreas no longer creates insulin. Insulin is a hormone that is needed to properly metabolize the carbohydrates in food. Because their bodies no longer produce insulin, people with type 1 diabetes must take multiple daily injections of insulin to replace the missing insulin so blood sugar levels stay steady.

Dutta said this treatment could also be helpful for people with type 2 diabetes who need to take insulin injections. People with type 2 diabetes still produce insulin, but their bodies don't use it efficiently.

There are many problems with existing insulin therapy. One is that you have to give yourself multiple injections every day. Another is that it's hard to figure out the exact dose of insulin you might need. Currently, people on insulin test their blood sugar by drawing a drop of blood from their fingertip numerous times a day, which lets them know whether they need more or less insulin in their next shot.

Someone with diabetes must also figure out how many carbohydrates are in the food they plan to eat. (Carbohydrates are broken down into sugar in the body to provide fuel for the cells in the body and brain.) If any of these calculations are wrong, blood sugar levels can go either too high or too low. Both extremes can be dangerous.

The nano-network is designed to deal with some of these issues. Insulin would be released in response to higher glucose levels, so there wouldn't be a need to check blood sugar levels so often. There also would be no need to count carbohydrates, because the nano-network would release insulin to process the food someone has eaten.

The nano-network is made up of nanoparticles with a solid core of insulin, modified dextran and glucose oxidase enzymes. In the presence of high glucose levels, the glucose oxidase enzymes convert glucose into gluconic acid. Gluconic acid, in turn, then dissolves the modified dextran, releasing the insulin.

The nano-network forms in the body after injection because some nanoparticles are coated with a negative charge, while others are given a positive charge. Once inside the body, these particles are attracted to each other and join together to form the nano-network, Gu said.

All of the components of the nano-network -- and its byproducts -- are completely biocompatible and dissolve over time, so they shouldn't cause any immune system response, Gu added.

The current study, published online this month in the journal ACS Nano, found that when injected into mice, the nano-network was able to control blood glucose levels for up to 10 days.

What remains to be seen is how the researchers will ensure that the nano-networks won't release too much insulin (causing low blood sugar levels) or not enough insulin (causing high blood sugar levels) in humans, and how someone would know when it was time for a new injection. Also, research with animals often can't be replicated in humans.

"This study demonstrates the idea. It's very promising, but we need to perform more studies," Gu said. "We want to further tailor the materials, and we want to increase the response speed of the insulin. It may take some time, but I'm quite confident in this new technology."

Dutta also was enthusiastic about the possibility of using glucose-responsive nano-networks. But, he cautioned, "This is going to take time. Many questions still need to be answered in animal studies, and we don't know what the regulatory pathway would be, although I do anticipate regulatory challenges. This is an uncharted pathway."

More information

Learn more about both types of diabetes from the U.S. National Institute of Diabetes and Digestive and Kidney Diseases.

Health News Copyright © 2013 HealthDay. All rights reserved.

*DISCLAIMER*: The information contained in or provided through this site section is intended for general consumer understanding and education only and is not intended to be and is not a substitute for professional advice. Use of this site section and any information contained on or provided through this site section is at your own risk and any information contained on or provided through this site section is provided on an "as is" basis without any representations or warranties.
Powered by WorldNow

WSLS 10, P.O. Box 10
Roanoke, VA 24022-0010

Telephone: 540.981.9110
Fax: 540.343.3157
Email: news@wsls.com

Can't find something?
Powered by WorldNow
All content © Copyright 2000 - 2014 Media General Communications Holdings, LLC. A Media General Company.